WIP: Refinement in Mathematics
This post is a little different from the usual one. I want to talk about a pattern that I see happen often in mathematics, that of refining propositions to objects. I'm sure that, like other patterns in mathematics, it can be formalized and studied separately, but I'm not enough a mathematician to do that. If you have ideas on a more abstract view on what I'm calling refinement, please write. I'll do the best I can, formalizing refinement in a category-theoretic framework
Refining divisibility
By “refinement” I mean going from a proposition we want to study, to an object that represents the possible “obstructions” to that proposition being true. Then by studying the possible obstructions, we learn more about when the proposition is true. This is a bit vague, so let's consider an example.
Consider the question of whether one number is divisible by another; in particular, let's look at divisibility by seven. What numbers are divisible and not divisible by seven? Well, this is of course a question we can answer—multiples of seven are divisible by it, others are not.
But so far, we are just thinking about whether individual numbers are divisible by seven. Next, we would like to expand our knowledge by understanding how relations between numbers are reflected in relations between their divisibility by seven.
For example, one relation between numbers is that of product—we say one number is the product of two numbers. And a relation exists between their divisibility that matches the relation of product: if we know whether
On the other hand, the relation of sum doesn't map cleanly into a relation between divisibilities. That is, if we know whether
To be able to answer questions about the divisibility of sums of numbers, we instead must discover a new proposition to study: modular residue. So instead of talking about a single proposition (whether or not a number is divisible by seven), we talk about seven propositions (whether it has residue 0, 1, 2, 3, 4, 5, or 6). If we know the mod-7 residues of two numbers, we also know the mod-7 residue of their sum (by the rules of modular arithmetic), and knowing the mod-7 residue of a number, we know whether that number is divisible by seven.
Thinking with categories
Skip this section if category theory is not your cup of tea.
In a category-theoretic framework, we would say that divisibility by seven is a function from the set of integers to the set of propositions, or truth values:
For example, if we know whether two numbers are divisible by seven, we also know whether their product is. The integers with a product operation are a monoid, and since the operations of the monoid map to operations on their divisibilities, we know that the divisibility of numbers by seven also forms a monoid. This “divisibility monoid” has false as its identity (1, the multiplicative identity, is not divisible by seven) and “or” as its product. So we have a function
Furthermore, integers can be added, and form a ring under addition and multiplication. But now there is not a function between rings
In other words, I am asking: suppose we have a collection of concrete categories, each of which have an analog of some object
If these universal objects can be identified, they should have the same structure as the collection of categories itself (which are structured by factorization of their forgetful functors). Could this allow studying the structures that can be built on a category, by studying the structures that exist in the category?
From this category-theoretic point of view, we can formulate all sorts of additional questions. For example, given all the possible structures we can define on the integers, what are the associated notions of divisibility? We can always refine the integers to themselves, and then answer arbitrary questions about the integers and accurately represent all operations on the integers, but what's interesting is that we can sometimes do better.
In the divisibility example, where we eventually refined divisibility to modular residue, we can look at the seven residue classes as “obstructions” to divisibility by seven. There’s the trivial obstruction—that is, the lack of an obstruction—along with six different ways a number can fail to be divisible. To see another example of this, where the obstructions are more physical, let's look at defining groups on graphs.
Groups on graphs
Given a connected, undirected graph
We are interested in the question of which equations are solvable. Luckily, in solving an equation there aren't too many choices to be made: label
In general, if there is a cycle in the graph, then we can pick an orientation for it and label the edges along the cycle (oriented as chosen) with 1. If the cycle goes through vertices
This insight allows us to understand how certain relations between equations relate their solvability. For example, we can imagine changing the labeling of a single edge. Does that affect solvability? Only if that edge is along a cycle, in which case that cycle corresponds to a relation which would be violated by changing the label on the edge.
We can formalize the cycles on a graph using the fundamental group. Given any cycle in the graph
And this refinement also extends to additional operations on graphs, like the product or wedge product of two graphs. The fact that this refinement exists gives as some justification in saying that the fundamental group of a graph describes obstructions to the solvability of equations on it.
Work in progress
If you have other examples of mathematical refinement, or a generalized or abstract way of looking at this phenomenon, please write. I'm interested in this process of refinement, including questions like determining when it is possible or figuring out ways to do it automatically; or, similar problems in computer science, physics, and other fields.
Footnotes:
I don't know enough category theory to know if this is actually sufficient. Help?